About

This is a dataset of 142 countries, with values for life expectancy, GDP per capita, and population, every five years, from 1952 to 2007. Learn more here and watch this data come alive in this TED talk by Han’s Rosling.

gapminder %>% 
  head(10) %>% 
knitr::kable(align = "c")
country continent year lifeExp pop gdpPercap
Afghanistan Asia 1952 28.801 8425333 779.4453
Afghanistan Asia 1957 30.332 9240934 820.8530
Afghanistan Asia 1962 31.997 10267083 853.1007
Afghanistan Asia 1967 34.020 11537966 836.1971
Afghanistan Asia 1972 36.088 13079460 739.9811
Afghanistan Asia 1977 38.438 14880372 786.1134
Afghanistan Asia 1982 39.854 12881816 978.0114
Afghanistan Asia 1987 40.822 13867957 852.3959
Afghanistan Asia 1992 41.674 16317921 649.3414
Afghanistan Asia 1997 41.763 22227415 635.3414

Quick Look

The dataset has 1704 rows and 6 columns.

We are using the glue package here to summarize number of countries in each continent using R code. The chunk itself is invisible here because we set echo = FALSE but you can use the download code button above to see the full code.

  • Africa has 624 countries
  • Americas has 300 countries
  • Asia has 396 countries
  • Europe has 360 countries
  • Oceania has 24 countries

The table below shows how life expectancy varies with continent.

gapminder %>% 
  filter(year == 2007) %>% 
  group_by(continent) %>% 
  summarize(median_life_exp = round(median(lifeExp), 1)) %>% 
  knitr::kable(align = "c", 
               col.names = c("Continent", 
                             "Median Life Expectancy"),
               caption = "Life Expetancy by Continent")
Life Expetancy by Continent
Continent Median Life Expectancy
Africa 52.9
Americas 72.9
Asia 72.4
Europe 78.6
Oceania 80.7

GDP vs life expectancy?

In this section we will explore to the question “Do people in wealthy countries live longer”. For this report we will do the analysis for the year 2007. If you want to generate similar report for different years try the parameters feature of RMarkdown.

gapminder %>% 
  filter(year == 2007) %>% 
  ggplot(aes(x = gdpPercap, 
             y = lifeExp, 
             color= continent, 
             size = pop/1000000)) + # population in millions
  geom_point()+
  labs(x = "GDP Per Capita",
       y = "Life Expectancy",
       title = "Relationship between GDP and Life Expectancy",
       subtitle = "Data Source: Gapminder", 
       size = "Population in millions")

LS0tCnRpdGxlOiAiR2FwbWluZGVyIERhdGEgUmVwb3J0IgphdXRob3I6ICJNZWVuYWtzaGkgS3VzaHdhaGEiCmRhdGU6ICIyMDIyLTA5LTE1IgpvdXRwdXQ6IAogIGh0bWxfZG9jdW1lbnQ6CiAgICB0b2M6IHRydWUKICAgIHRvY19mbG9hdDogdHJ1ZQogICAgY29kZV9mb2xkaW5nOiBoaWRlCiAgICBjb2RlX2Rvd25sb2FkOiB0cnVlCiAgICB0aGVtZTogZmxhdGx5Ci0tLQoKYGBge3Igc2V0dXAsIGluY2x1ZGU9RkFMU0V9CmtuaXRyOjpvcHRzX2NodW5rJHNldChlY2hvID0gVFJVRSkKbGlicmFyeShnYXBtaW5kZXIpCmxpYnJhcnkodGlkeXZlcnNlKQpsaWJyYXJ5KGdsdWUpCmBgYAoKIyMgQWJvdXQKClRoaXMgaXMgYSBkYXRhc2V0IG9mIDE0MiBjb3VudHJpZXMsIHdpdGggdmFsdWVzIGZvciBsaWZlIGV4cGVjdGFuY3ksIEdEUCBwZXIgY2FwaXRhLCBhbmQgcG9wdWxhdGlvbiwgZXZlcnkgZml2ZSB5ZWFycywgZnJvbSAxOTUyIHRvIDIwMDcuIExlYXJuIG1vcmUgW2hlcmVdKGh0dHBzOi8vd3d3LmdhcG1pbmRlci5vcmcvZGF0YS9kb2N1bWVudGF0aW9uLykgYW5kIHdhdGNoIHRoaXMgZGF0YSBjb21lIGFsaXZlIGluIHRoaXMgW1RFRCB0YWxrXShodHRwczovL3d3dy50ZWQuY29tL3RhbGtzL2hhbnNfcm9zbGluZ190aGVfYmVzdF9zdGF0c195b3VfdmVfZXZlcl9zZWVuP2xhbmd1YWdlPWVuKSBieSBIYW4ncyBSb3NsaW5nLgoKCmBgYHtyIHN1bW1hcnl9CmdhcG1pbmRlciAlPiUgCiAgaGVhZCgxMCkgJT4lIAprbml0cjo6a2FibGUoYWxpZ24gPSAiYyIpCmBgYAoKCiMjIFF1aWNrIExvb2sKClRoZSBkYXRhc2V0IGhhcyBgciBucm93KGdhcG1pbmRlcilgIHJvd3MgYW5kIGByIG5jb2woZ2FwbWluZGVyKWAgY29sdW1ucy4gCgpXZSBhcmUgdXNpbmcgdGhlIGBnbHVlYCBwYWNrYWdlIGhlcmUgdG8gc3VtbWFyaXplIG51bWJlciBvZiBjb3VudHJpZXMgaW4gZWFjaCBjb250aW5lbnQgdXNpbmcgYFJgIGNvZGUuIFRoZSBjaHVuayBpdHNlbGYgaXMgaW52aXNpYmxlIGhlcmUgYmVjYXVzZSB3ZSBzZXQgYGVjaG8gPSBGQUxTRWAgYnV0IHlvdSBjYW4gdXNlIHRoZSBkb3dubG9hZCBjb2RlIGJ1dHRvbiBhYm92ZSB0byBzZWUgdGhlIGZ1bGwgY29kZS4gCgpgYGB7ciByZXN1bHRzID0gJ2FzaXMnLCBlY2hvPUZBTFNFfQpnYXBtaW5kZXIgJT4lIAogIGNvdW50KGNvbnRpbmVudCkgJT4lIAogIGdsdWVfZGF0YSgiLSAge2NvbnRpbmVudH0gaGFzIHtufSBjb3VudHJpZXMiKSAlPiUgCiAgZ2x1ZV9jb2xsYXBzZShzZXAgPSAiIFwgXG4iKQpgYGAKClRoZSB0YWJsZSBiZWxvdyBzaG93cyBob3cgbGlmZSBleHBlY3RhbmN5IHZhcmllcyB3aXRoIGNvbnRpbmVudC4gCgoKYGBge3J9CmdhcG1pbmRlciAlPiUgCiAgZmlsdGVyKHllYXIgPT0gMjAwNykgJT4lIAogIGdyb3VwX2J5KGNvbnRpbmVudCkgJT4lIAogIHN1bW1hcml6ZShtZWRpYW5fbGlmZV9leHAgPSByb3VuZChtZWRpYW4obGlmZUV4cCksIDEpKSAlPiUgCiAga25pdHI6OmthYmxlKGFsaWduID0gImMiLCAKICAgICAgICAgICAgICAgY29sLm5hbWVzID0gYygiQ29udGluZW50IiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIk1lZGlhbiBMaWZlIEV4cGVjdGFuY3kiKSwKICAgICAgICAgICAgICAgY2FwdGlvbiA9ICJMaWZlIEV4cGV0YW5jeSBieSBDb250aW5lbnQiKQogIApgYGAKCgojIyBHRFAgdnMgbGlmZSBleHBlY3RhbmN5PwoKSW4gdGhpcyBzZWN0aW9uIHdlIHdpbGwgZXhwbG9yZSB0byB0aGUgcXVlc3Rpb24gIkRvIHBlb3BsZSBpbiB3ZWFsdGh5IGNvdW50cmllcyBsaXZlIGxvbmdlciIuIEZvciB0aGlzIHJlcG9ydCB3ZSB3aWxsIGRvIHRoZSBhbmFseXNpcyBmb3IgdGhlIHllYXIgMjAwNy4gSWYgeW91IHdhbnQgdG8gZ2VuZXJhdGUgc2ltaWxhciByZXBvcnQgZm9yIGRpZmZlcmVudCB5ZWFycyB0cnkgdGhlIFtwYXJhbWV0ZXJzXShodHRwczovL3JtYXJrZG93bi5yc3R1ZGlvLmNvbS9sZXNzb24tNi5odG1sKSBmZWF0dXJlIG9mIFJNYXJrZG93bi4KCmBgYHtyIHBsb3R9CmdhcG1pbmRlciAlPiUgCiAgZmlsdGVyKHllYXIgPT0gMjAwNykgJT4lIAogIGdncGxvdChhZXMoeCA9IGdkcFBlcmNhcCwgCiAgICAgICAgICAgICB5ID0gbGlmZUV4cCwgCiAgICAgICAgICAgICBjb2xvcj0gY29udGluZW50LCAKICAgICAgICAgICAgIHNpemUgPSBwb3AvMTAwMDAwMCkpICsgIyBwb3B1bGF0aW9uIGluIG1pbGxpb25zCiAgZ2VvbV9wb2ludCgpKwogIGxhYnMoeCA9ICJHRFAgUGVyIENhcGl0YSIsCiAgICAgICB5ID0gIkxpZmUgRXhwZWN0YW5jeSIsCiAgICAgICB0aXRsZSA9ICJSZWxhdGlvbnNoaXAgYmV0d2VlbiBHRFAgYW5kIExpZmUgRXhwZWN0YW5jeSIsCiAgICAgICBzdWJ0aXRsZSA9ICJEYXRhIFNvdXJjZTogR2FwbWluZGVyIiwgCiAgICAgICBzaXplID0gIlBvcHVsYXRpb24gaW4gbWlsbGlvbnMiKQogIApgYGAK